

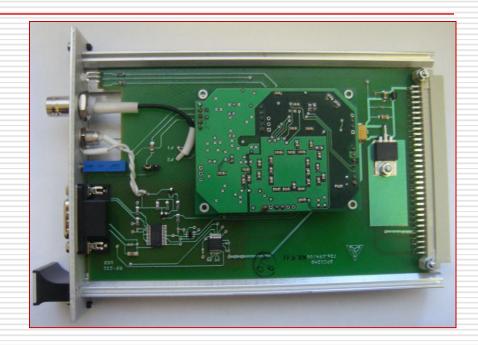
ОБОРУДОВАНИЕ НПЦ «АСПЕКТ» для СПЕКТРОМЕТРИЧЕСКИХ **ИЗМЕРЕНИЙ** 



## РАЗРАБОТКИ 2011 года



#### Общие сведения


- **БПЦ-02** это одноплатный спектрометр с Цифровым Процессором Импульсов (ЦПИ).
- Конструктивно преобразователь представляет собой модуль, выполненный в стандарте МЭК 297 («Евромеханика») высотой 3U, шириной 6HP и размером платы (160х100) мм.
- Функционально он включает в себя полный тракт спектрометрического усилителя и МА с памятью спектров объемом до 8К каналов.
- ЦПИ позволяет осуществлять цифровую фильтрацию, формирование и определение амплитуды входных импульсов, режекцию наложений и восстановление базовой линии.





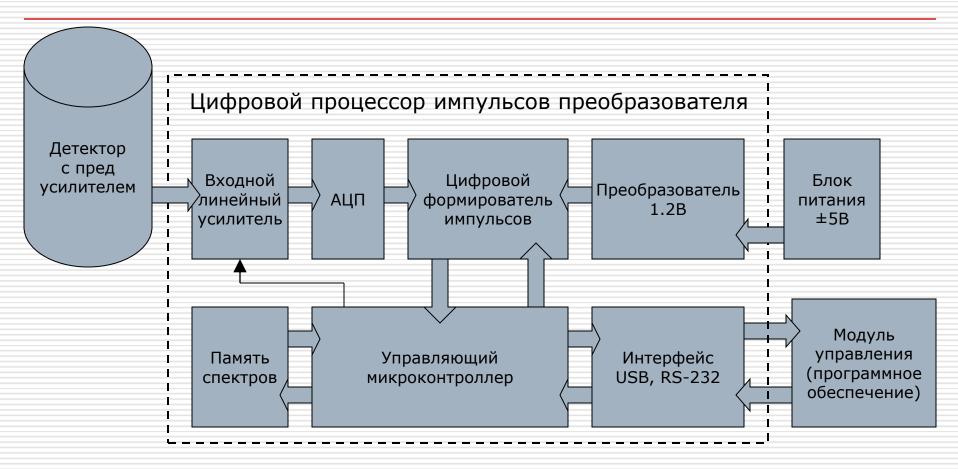
#### Общие сведения

- Для управления спектрометром и передачи накопленных спектров на компьютер используется интерфейс USB.
- Управляющая микропрограмма ЦПИ хранится в энергонезависимой памяти и может быть модифицирована с появлением новых версий программного обеспечения, с целью расширения функциональных возможностей спектрометра.



• Питание спектрометра осуществляется от стабилизированного источника напряжения ±5В. Ток, потребляемый спектрометром не превышает 0.5А.




#### Особенности

- Может работать с различными типами предусилителей (с резистивной обратной связью или с ключевым разрядом) и любой полярностью входного сигнала.
- В качестве цифрового фильтра выбран трапециидальный фильтр, являющийся практически идеальным фильтром для экспоненциальных входных импульсов.



- Программно-переключаемое время формировки
- Программно-переключаемый коэффициент усиления входного каскада.
- Режим «Виртуального осциллографа» для точной настройки параметров.





Функциональная схема анализатора на базе преобразователя



#### Входной линейный усилитель

 Во входном каскаде осуществляется дополнительное усиление сигнала линейным широкополосным усилителем с переменным коэффициентом усиления ( четыре фиксированных значения, задаются программно) и компенсация полюса нулем.

#### Аналого-цифровой преобразователь (АЦП)

 ■ АЦП преобразует сигнал в последовательность цифровых отсчетов, которые подаются на вход цифрового процессора импульсов для последующей обработки. Частота преобразования АЦП – до 40 МГц (устанавливается программно).



#### Цифровой формирователь импульсов (ЦФИ)

- Главной отличительной особенностью является наличие модуля ЦФИ, который заменяет аналоговые цепи фильтрации, формировки, режекции наложений, восстановления базовой линии и определения амплитуды импульса, используемые в спектрометрах, построенных по традиционной схеме.
- Реализован на базе микросхемы программируемой логики и производит обработку в реальном времени входной последовательности отсчетов АЦП в соответствии с логикой, заданной встроенной микропрограммой.
- Цифровая обработка информации позволяет производить программную перестройку параметров формировки, что делает такую систему более гибкой и удобной в эксплуатации. Кроме того, отсутствие большого числа аналоговых цепей значительно улучшает температурную и долговременную стабильность, а также облегчает настройку спектрометра.



#### Память спектров

 Память спектров является традиционным узлом для многоканальных анализаторов. Когда спектрометром фиксируется импульс с определенной амплитудой, происходит увеличение счетчика, находящегося в соответствующем месте памяти. Таким образом, последовательно в памяти образуется спектр, являющийся главным выходным продуктом многоканального анализатора.

#### Управляющий микроконтроллер

 Микроконтроллер служит для установки перестраиваемых параметров цифрового процессора импульсов, для формирования спектра, а так же для связи с компьютером. Кроме того, микроконтроллер имеет дополнительный интерфейс для «внутрисхемного» управление дополнительным периферийным оборудованием, таким как модуль питания детектора.



#### Интерфейс USB

• Служит для управления спектрометром от компьютера и для пересылки набранных спектров на компьютер.

| Тип интерфейса                      | USB          |
|-------------------------------------|--------------|
| Длина линии связи, м                | До 5         |
| Скорость передачи данных, бит/с     | 250000       |
| Длина слова данных, бит             | 8            |
| Количество стоповых бит             | 1            |
| Паритет                             | Без паритета |
| Количество устройств на одной линии | 1            |
| Гальваническая развязка             | нет          |

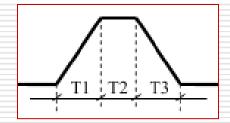
• Опционально может быть заменён на интерфейс RS-232/485.

#### Преобразователь напряжения

 Преобразователь напряжения служит для формирования вторичных напряжений, необходимых для питания внутренних узлов спектрометра.



### Технические характеристики

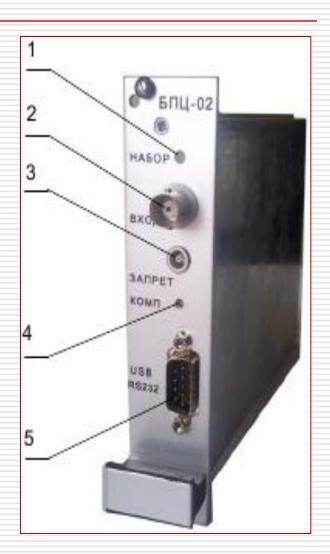

| • Рабочий диапазон амплитуд входного сигнала                       | от 0 до 0,6 В                   |
|--------------------------------------------------------------------|---------------------------------|
| • Полярность входных сигналов                                      | положительная/<br>отрицательная |
| • Длительность фронта входных импульсов                            | не менее 20 нсек                |
| - Длительность спада входных импульсов                             | 50 мкс                          |
| • Входное сопротивление                                            | 1 кОм                           |
| • Интегральная нелинейность                                        | не более 0,04%                  |
| • Число каналов преобразования                                     | от 8К до 0,5К                   |
| • Емкость канала                                                   | 2 <sup>24</sup> -1=16777215     |
| <ul> <li>Максимальная входная загрузка (при Т1&lt;2мкс)</li> </ul> | 2x10 <sup>5</sup> 1/сек         |
| • Формировка импульса                                              | Трапециидальная                 |



#### Технические характеристики

■ Время нарастания (peaking time ), с шагом 0,1 мкс (T1=T3), при тактовой частоте:

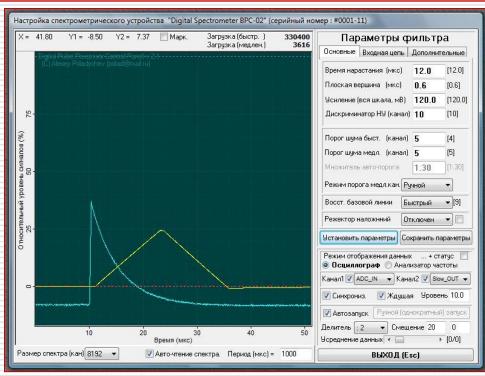
| 8 МГц  | от 0,5 до | 100 мкс |
|--------|-----------|---------|
| 20 МГц | от 0,5 до | 50 мкс  |
| 40 МГц | от 0,5 до | 25 мкс  |




| <ul> <li>Длительность плоской вершины (Т2), с шагом</li> <li>0,1 мкс:</li> </ul> | от 0 до 6 мкс    |
|----------------------------------------------------------------------------------|------------------|
| <ul> <li>Четыре фиксированных коэффициента<br/>усиления:</li> </ul>              | 80,160,320,640мВ |
| • Время установления рабочего режима:                                            | не более 10 мин  |
| • Время непрерывной работы:                                                      | 24 ч.            |



#### Общий вид преобразователя

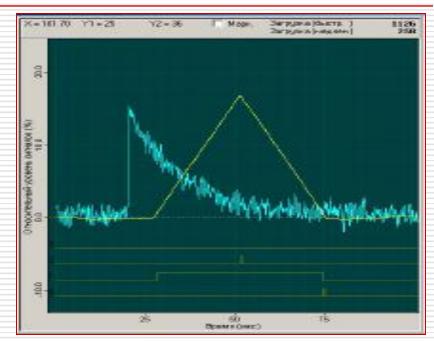

- 1 «НАБОР» светодиод
- 2 разъем (BNC) «ВХОД» вход аналогового сигнала
- 3 разъём (LEMO) «ЗАПРЕТ» вход сигнала совпадений / антисовпадений
- 4 «КОМП» резистор компенсации полюса нулем
- 5 «USB, RS232» 9-контактный разъём для подключения ПК.

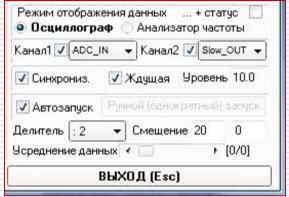




#### Программное обеспечение

- В комплект поставки входит специализированное программное обеспечение, позволяющее производить настройку параметров спектрометра.
- Для обеспечения работы спектрометра с программами сторонних производителей в комплект поставки включена





библиотека API (DLL), позволяющая обращаться ко всем функциям управления устройством из программ, написанных на таких языках программирования, как VC++, VB, Delphi, а также позволяет управлять спектрометром из такого популярного пакета автоматизации, как LabView.



#### Программное обеспечение

- двухканальный виртуальный осциллограф для облегчения настройки параметров фильтра, с возможностью выбора виртуального источника сигнала для каждого канала
- масштабирование и синхронизация осуществляются так же, как и в традиционном осциллографе
- Цифровой осциллограф восстанавливает выходной сигнал цифрового фильтра (в котором используется трапецеидальная взвешивающая функция) и обеспечивает его визуализацию



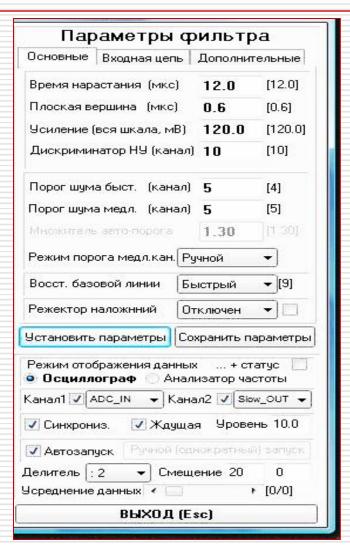




#### Программное обеспечение

Панель с основными органами настройки входной цепи:

- полярность входного сигнала
- амплитуда входного сигнала
- согласование входного сигнала с предусилителем блока детектирования «компенсация «PoleZero»
- блокировка импульса разряда детектора (для детекторов с импульсной обратной связью)
- управление входом «запрет»






#### Программное обеспечение

Панель настройки параметров цифрового фильтра:

- определяет симметричные значения времени нарастания и спада, ширину плоской вершины временной характеристики цифрового фильтра
- определяет порог дискриминатора нижнего уровня
- определяет режим работы восстановителя базовой линии
- Определяет режим работы режектора наложенных импульсов





## Сравнение современных цифровых спектрометров

|                                                       | NIM 1)                     | DSPEC<br>Plus 1)               | DigiDART 1)                    | Inspector 2000 1)                  | DP4 <sup>2)</sup>      | uDXP <sup>3)</sup>              | БПЦ-02               |
|-------------------------------------------------------|----------------------------|--------------------------------|--------------------------------|------------------------------------|------------------------|---------------------------------|----------------------|
| Тип<br>формировки                                     | псевдогаусс                | трапеция                       | трапеция                       | трапеция                           | трапеция               | треугольник                     | трапеция             |
| Время<br>формировки /<br>время<br>нарастания<br>(мкс) | 0.5, 1, 2, 3, 6,           | 0.2 – 23.0,<br>шаг 0.2         | 0.8 – 20.0,<br>шаг 0.2         | 0.4 – 38.0,<br>переменный<br>шаг   | 0.8 — 102.4<br>шаг 0.2 | 0.375 – 96<br>переменный<br>шаг | 0.3 – 100<br>шаг 0.1 |
| Режектор<br>наложений                                 | да                         | да                             | да                             | да                                 | да                     | да                              | да                   |
| Восстановите<br>ль базовой<br>линии                   | да                         | да                             | да                             | да                                 | да                     | да                              | да                   |
| «Pole zero»<br>компенсация                            | автоматичес<br>кая, ручная | цифровая<br>автоматиче<br>ская | цифровая<br>автоматичес<br>кая | цифровая<br>полуавтомат<br>ическая | нет                    | нет                             | ручная,<br>цифровая  |
| Вход запрета                                          | да                         | да                             | нет                            | нет                                | нет                    | нет                             | да                   |
| Тип АЦП                                               | Вилкинсон<br>450 МГц       | не указан                      | не указан                      | не указан                          | 20 МГц                 | 16 МГц                          | 8, 20, 40<br>МГц     |



## Сравнение современных цифровых спектрометров

|                                                    | NIM 1)                  | DSPEC Plus 1)            | DigiDART 1)          | Inspector 2000 | DP4 <sup>2)</sup> | uDXP 3)                     | БПЦ-02                               |
|----------------------------------------------------|-------------------------|--------------------------|----------------------|----------------|-------------------|-----------------------------|--------------------------------------|
| Кол-во<br>каналов<br>анализатора<br>(макс)         | 16К                     | 16К                      | 16К                  | 16К            | 8K                | 8К                          | 8К                                   |
| Источник<br>высокого<br>напряжения                 | ±5κB, ±2κΒ              | ±5кВ                     | ±5кВ, +1.3кВ         | ±5кВ, +1.3кВ   | нет               | нет                         | дополнитель<br>ный модуль<br>питания |
| Управление<br>источником<br>высокого<br>напряжения | ручное                  | программное              | программное          | программное    | -                 | -                           | ручное,<br>программное               |
| Управление<br>полярностью<br>входа                 | внешнее                 | программное              | программное          | программное    | програм<br>мное   |                             | программное                          |
| Источник<br>питания                                | 220В<br>переменное      | 220В<br>переменное       | аккумулятор          | аккумулятор    | +3.3B,<br>±5B     | +3.3B, ±5B                  | ±5B                                  |
| Интерфейс с<br>компьютером                         | ethernet,<br>37-pin DPM | ethernet, 37-<br>pin DPM | USB, опц. RS-<br>232 | USB, RS-232    | USB, RS-<br>232   | RS-232,<br>параллель<br>ный | USB,<br>опционально<br>RS-232        |

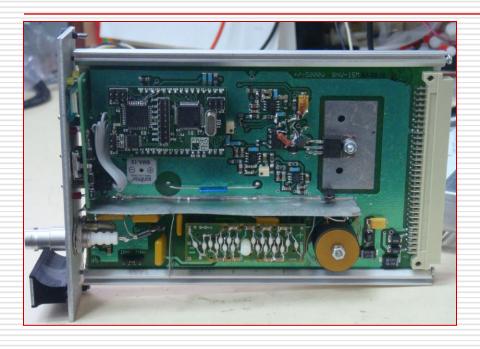


## Сравнение современных цифровых спектрометров

|                              | NIM 1)                       | DSPEC Plus 1)                | DigiDART 1)                  | Inspector 2000                  | DP4 <sup>2)</sup>                   | uDXP 3)                           | БПЦ-02                           |
|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|-------------------------------------|-----------------------------------|----------------------------------|
| Программное обеспечение (ОС) | Maestro<br>(Windows<br>95 +) | Maestro<br>(Windows 95<br>+) | Maestro<br>(Windows 98<br>+) | Genie-2000<br>(Windows 95<br>+) | MCA-<br>8000A<br>(Window<br>s 98 +) | -                                 | SpectraLine<br>(Windows 98<br>+) |
| Изготовитель                 | Ortec,<br>Canberra           | Perkin-Elmer<br>Ortec        | Perkin-Elmer<br>Ortec        | Canberra<br>Industries          | Amptek<br>Inc.                      | X-ray Instrument ation Associates | ЗАО «НПЦ<br>«АСПЕКТ»             |

#### Данные для таблицы взяты из следующих источников:

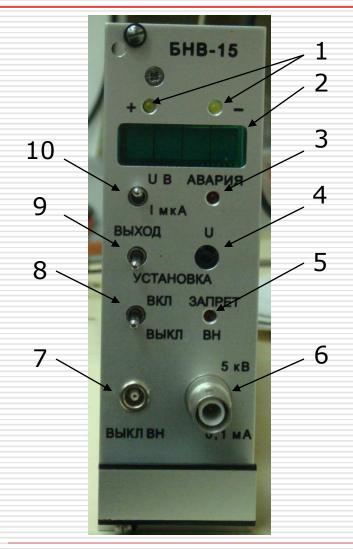
- 1) Duc T. Vo, Phyllis A. Russo "Comparisons of the Portable Digital Spectrometer Systems", Los Alamos National Lab (LA-13895-MS, Issued Feb. 2002)
- 2) http://www.amptek.com/dpp.html
- 3) http://www.xia.com/microDXP.html






#### Общие сведения

- БНВ-15М предназначен для питания высоковольтным стабилизированным напряжением блоков детектирования ионизирующего излучения.
- Конструктивно преобразователь представляет собой модуль, выполненный в стандарте МЭК 297 («Евромеханика») высотой 3U, шириной 8HP.
- Выходное высокое напряжение до 5 кВ
- Ток нагрузки до 100 мкА






#### Особенности

- установка параметров и управление блоком может производиться как ручным способом, так и программным
- индикация напряжения или тока нагрузки на светодиодном черырехразрядном семисегментном индикаторе
- полярность выходного высокого напряжения «+» или «-»
- защита от превышения тока в цепи нагрузки
- блокировка высокого напряжения по сигналу «INHIBIT»





### Общий вид лицевой панели

| 1  | светодиоды «полярность «+» / «-»                          |
|----|-----------------------------------------------------------|
| 2  | светодиодный четырёхразрядный<br>семисегментный индикатор |
| 3  | светодиод «авария»                                        |
| 4  | энкодер «U» для установки выходного напряжения            |
| 5  | светодиод «запрет BH»                                     |
| 6  | высоковольтный разъём «5кВ – 0.1мА»                       |
| 7  | разъём «выкл ВН»                                          |
| 8  | тумблер «вкл./выкл.» высокого напряжения                  |
| 9  | тумблер «выход/установка»                                 |
| 10 | тумблер «UB/IмкА»                                         |



#### Основные технические характеристики

| Выходное высокое напряжение,                                                                                                            | От 500 до 5000 В |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Ток нагрузки,                                                                                                                           | От 1 до 100 мкА  |
| Максимальное значение пульсаций выходного высокого напряжения в рабочем диапазоне напряжений и токов нагрузки от пика до пика, не более | 5 мВ             |
| Автоматическая скорость нарастания и спада выходного высокого напряжения, не более                                                      | 15 В/сек         |
| Ток потребления при Uвых=5000B (с нагрузкой 100 мкA), не более                                                                          |                  |
| по шине +12В                                                                                                                            | 75 mA            |
| по шине +5В                                                                                                                             | 130 мА           |
| по шине -5В                                                                                                                             | 5 мА             |



# Спектрометрическое устройство СУ-05П1 (с цифровым процессором импульсов)

Общий вид





## Способ модернизации СУ-05П1 с аналоговым трактом на тракт с цифровой обработкой

Замена двух блоков УИС-04 + БПА-04 на один БПЦ-02



БПЦ-02 вставить





## Спектрометрическое устройство СУ-05П1 (с автономным питанием)

### Общий вид







## Спектрометрическое устройство СУ-05П1 (с автономным питанием)

#### Особенности блока автономного питания БАП-01

- предназначен для автономного питания низким напряжением блоков спектрометрических трактов и питания предварительных усилителей детекторов
- •Номинальное значение напряжений:
- +5B,0.6A; -5B,0.2A; +12B,0.4A; -12B,0.1A; +24B,0.04A; -24B,0.04A
- СУ-05П1 с блоком БАП-01 может работать от аккумулятора не менее 10 часов
- от сети 220В, через зарядное устройство
- от автомобильного аккумулятора, при необходимости длительных измерений, через специальный адаптер АД-8В





## ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО НАУЧНО-ПРОИЗВОДСТВЕННЫЙ ЦЕНТР ИМ. Ю.К. НЕДАЧИНА



